Peramalan dengan Teknik Smoothing Situs ini adalah bagian dari objek pembelajaran JavaScript E-lab untuk pengambilan keputusan. JavaScript lain dalam seri ini dikategorikan dalam berbagai bidang aplikasi di bagian MENU di halaman ini. Seri waktu adalah urutan pengamatan yang dipesan tepat waktu. Inheren dalam pengumpulan data yang diambil dari waktu ke waktu adalah beberapa bentuk variasi acak. Ada metode untuk mengurangi pembatalan efek karena variasi acak. Teknik yang banyak digunakan adalah smoothing. Teknik-teknik ini, bila diterapkan dengan benar, menunjukkan lebih jelas tren dasarnya. Masukkan deret waktu Row-wise secara berurutan, mulai dari sudut kiri atas, dan parameternya, lalu klik tombol Hitung untuk mendapatkan peramalan satu periode di depan. Kotak kosong tidak termasuk dalam perhitungan tapi angka nol. Dalam memasukkan data Anda untuk berpindah dari sel ke sel di matriks data gunakan tombol Tab bukan panah atau masukkan kunci. Fitur deret waktu, yang mungkin terungkap dengan memeriksa grafiknya. Dengan nilai perkiraan, dan perilaku residual, pemodelan peramalan kondisi. Moving Averages: Moving averages rank antara teknik yang paling populer untuk preprocessing time series. Mereka digunakan untuk menyaring suara putih acak dari data, membuat rangkaian waktu lebih halus atau bahkan untuk menekankan komponen informasi tertentu yang terdapat dalam deret waktu. Exponential Smoothing: Ini adalah skema yang sangat populer untuk menghasilkan Time Series yang merapikan. Sedangkan dalam Moving Averages, pengamatan terakhir tertimbang secara merata, Exponential Smoothing memberikan bobot yang menurun secara eksponensial saat pengamatan bertambah tua. Dengan kata lain, observasi terakhir diberi bobot yang relatif lebih banyak dalam peramalan daripada pengamatan yang lebih tua. Double Exponential Smoothing lebih baik dalam menangani tren. Triple Exponential Smoothing lebih baik dalam menangani tren parabola. Rata-rata pergerakan tertimbang secara eksponensial dengan konstanta pemulusan a. Sesuai kira-kira dengan panjang rata-rata bergerak sederhana (yaitu periode) n, di mana a dan n dihubungkan oleh: a 2 (n1) ATAU n (2 - a) a. Jadi, misalnya, rata-rata bergerak tertimbang secara eksponensial dengan konstanta pemulusan sama dengan 0,1 akan sesuai kira-kira dengan rata-rata pergerakan 19 hari. Dan rata-rata pergerakan sederhana 40 hari akan sesuai kira-kira dengan rata-rata pergerakan tertimbang eksponensial dengan konstanta pemulusan sama dengan 0,04878. Holts Linear Exponential Smoothing: Misalkan deret waktunya tidak musiman namun memang menunjukkan tren. Metode Holts memperkirakan tingkat arus dan tren saat ini. Perhatikan bahwa rata-rata pergerakan sederhana adalah kasus khusus dari perataan eksponensial dengan menetapkan periode rata-rata bergerak ke bagian integer (Alpha 2). Untuk kebanyakan data bisnis, parameter Alpha yang lebih kecil dari 0,40 sering kali efektif. Namun, seseorang dapat melakukan pencarian grid dari ruang parameter, dengan 0,1 sampai 0,9, dengan penambahan 0,1. Kemudian alpha terbaik memiliki Mean Absolute Error terkecil (MA Error). Bagaimana membandingkan beberapa metode pemulusan: Meskipun ada indikator numerik untuk menilai keakuratan teknik peramalan, pendekatan yang paling banyak adalah menggunakan perbandingan visual beberapa perkiraan untuk menilai keakuratannya dan memilih di antara berbagai metode peramalan. Dalam pendekatan ini, seseorang harus merencanakan (menggunakan, misalnya Excel) pada grafik yang sama dengan nilai asli dari variabel deret waktu dan nilai prediksi dari beberapa metode peramalan yang berbeda, sehingga memudahkan perbandingan visual. Anda mungkin ingin menggunakan Prakiraan Masa Lalu oleh Teknik Smoothing JavaScript untuk mendapatkan perkiraan perkiraan masa lalu berdasarkan teknik pemulusan yang hanya menggunakan satu parameter tunggal. Metode Holt, dan Winters masing-masing menggunakan dua dan tiga parameter, oleh karena itu bukanlah tugas yang mudah untuk memilih nilai optimal, atau mendekati nilai optimal dengan trial and error untuk parameter. Pemulusan eksponensial tunggal menekankan perspektif jarak pendek yang menetapkan tingkat pada pengamatan terakhir dan didasarkan pada kondisi bahwa tidak ada kecenderungan. Regresi linier, yang sesuai dengan garis kuadrat terkecil terhadap data historis (atau data historis yang ditransformasikan), mewakili rentang panjang, yang dikondisikan pada tren dasarnya. Holts linear exponential smoothing menangkap informasi tentang tren terkini. Parameter dalam model Holts adalah level-parameter yang harus diturunkan bila jumlah variasi data besar, dan parameter tren harus ditingkatkan jika arah tren terkini didukung oleh faktor penyebab. Peramalan Jangka Pendek: Perhatikan bahwa setiap JavaScript di halaman ini memberikan perkiraan satu langkah di depan. Untuk mendapatkan ramalan dua langkah di depan. Cukup tambahkan nilai perkiraan ke akhir data deret waktu Anda lalu klik tombol Hitung yang sama. Anda dapat mengulangi proses ini beberapa kali untuk mendapatkan ramalan jangka pendek yang dibutuhkan. Cara Menghitung Rata-Rata Berperan Tertimbang di Excel Menggunakan Exponential Smoothing Analisis Data Excel untuk Dummies, Edisi ke-2 Alat Ekspedisi Eksponensial di Excel menghitung rata-rata pergerakan. Namun, bobot smoothing eksponensial nilai yang termasuk dalam perhitungan rata-rata bergerak sehingga nilai yang lebih baru memiliki efek yang lebih besar pada perhitungan rata-rata dan nilai lama memiliki efek yang lebih rendah. Bobot ini dilakukan melalui konstanta pemulusan. Untuk mengilustrasikan bagaimana alat Exponential Smoothing bekerja, anggaplah bahwa Anda kembali melihat informasi suhu harian rata-rata. Untuk menghitung rata-rata bergerak tertimbang dengan menggunakan smoothing eksponensial, lakukan langkah-langkah berikut: Untuk menghitung rata-rata bergerak yang rata-rata merapikan, pertama-tama klik tombol data DataPS8217s Data Analysis. Saat Excel menampilkan kotak dialog Analisis Data, pilih item Exponential Smoothing dari daftar dan kemudian klik OK. Excel menampilkan kotak dialog Exponential Smoothing. Identifikasi data. Untuk mengidentifikasi data yang ingin Anda hitung rata-rata bergerak yang rata-rata merapikan, klik di kotak teks Input Range. Kemudian identifikasikan range input, baik dengan mengetikkan alamat range worksheet atau dengan memilih range worksheet. Jika rentang masukan Anda menyertakan label teks untuk mengidentifikasi atau menggambarkan data Anda, pilih kotak centang Label. Berikan konstanta pemulusan. Masukkan nilai konstan smoothing pada kotak teks Damping Factor. File Bantuan Excel menunjukkan bahwa Anda menggunakan konstanta pemulusan antara 0,2 dan 0,3. Agaknya, bagaimanapun, jika Anda menggunakan alat ini, Anda memiliki gagasan sendiri tentang apa konstanta pemulusan yang benar. (Jika Anda tidak tahu apa-apa tentang konstanta pemulusan, mungkin sebaiknya Anda tidak menggunakan alat ini.) Beritahu Excel tempat untuk menempatkan data rata-rata bergerak rata-rata yang dihaluskan secara eksponensial. Gunakan kotak teks Output Range untuk mengidentifikasi kisaran lembar kerja tempat Anda ingin menempatkan data rata-rata bergerak. Dalam contoh lembar kerja, misalnya, Anda menempatkan data rata-rata bergerak ke dalam kisaran lembar kerja B2: B10. (Opsional) Bagilah data yang dihaluskan secara eksponensial. Untuk memetakan data yang dihaluskan secara eksponensial, pilih kotak centang Chart Output. (Opsional) Tunjukkan bahwa Anda menginginkan informasi kesalahan standar dihitung. Untuk menghitung kesalahan standar, pilih kotak centang Standard Errors. Excel menempatkan nilai kesalahan standar di samping nilai rata-rata pergerakan rata-rata yang dipercepat secara eksponensial. Setelah Anda selesai menentukan apa yang dimaksud dengan rata-rata bergerak yang ingin Anda hitung dan di mana Anda menginginkannya, klik OK. Excel menghitung moving average information. Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA EMA 12 dan 26 hari adalah rata-rata jangka pendek yang paling populer, dan indikator tersebut digunakan untuk menciptakan indikator seperti konvergensi konvergensi moving average (MACD ) Dan persentase harga osilator (PPO). Secara umum, EMA 50 dan 200 hari digunakan sebagai sinyal tren jangka panjang. Pedagang yang menggunakan analisis teknis menemukan rata-rata bergerak sangat berguna dan berwawasan bila diterapkan dengan benar namun menimbulkan malapetaka jika digunakan dengan tidak semestinya atau disalahartikan. Semua rata-rata bergerak yang umum digunakan dalam analisis teknis adalah, pada dasarnya, indikator lagging. Akibatnya, kesimpulan yang diambil dari penerapan rata-rata bergerak ke bagan pasar tertentu adalah untuk mengkonfirmasi pergerakan pasar atau untuk menunjukkan kekuatannya. Sangat sering, pada saat garis indikator rata-rata bergerak membuat perubahan untuk mencerminkan pergerakan yang signifikan di pasar, titik optimal masuk pasar telah berlalu. EMA memang berfungsi untuk mengurangi dilema ini sampai batas tertentu. Karena perhitungan EMA menempatkan lebih banyak bobot pada data terbaru, ia memeluk tindakan harga sedikit lebih ketat dan karena itu bereaksi lebih cepat. Hal ini diinginkan bila EMA digunakan untuk mendapatkan sinyal masuk perdagangan. Menafsirkan EMA Seperti semua indikator rata-rata bergerak, tren ini jauh lebih sesuai untuk pasar tren. Bila pasar berada dalam uptrend yang kuat dan berkelanjutan. Garis indikator EMA juga akan menunjukkan tren naik dan sebaliknya untuk tren turun. Pedagang yang waspada tidak hanya memperhatikan arah garis EMA tapi juga hubungan tingkat perubahan dari satu bar ke bar berikutnya. Misalnya, karena aksi harga dari uptrend yang kuat mulai merata dan membalikkan, tingkat perubahan EMA dari satu batang ke bar berikutnya akan mulai berkurang sampai saat garis indikator rata dan tingkat perubahannya nol. Karena efek lagging, pada titik ini, atau bahkan beberapa bar sebelumnya, tindakan harga seharusnya sudah berbalik arah. Oleh karena itu, mengikuti bahwa penurunan yang konsisten secara konsisten dalam perubahan EMA dapat digunakan sebagai indikator yang dapat mengatasi dilema yang disebabkan oleh efek lagging moving averages. Kegunaan Umum EMA EMA biasanya digunakan bersamaan dengan indikator lain untuk mengkonfirmasi pergerakan pasar yang signifikan dan untuk mengukur validitasnya. Bagi pedagang yang berdagang intraday dan pasar yang bergerak cepat, EMA lebih bisa diterapkan. Cukup sering trader menggunakan EMA untuk menentukan bias trading. Misalnya, jika EMA pada grafik harian menunjukkan tren kenaikan yang kuat, strategi pedagang intraday mungkin hanya diperdagangkan dari sisi panjang pada grafik intraday.
No comments:
Post a Comment